It's Time for 300mm Prime

Iddo Hadar

Managing Director, 300mm Prime Program Office

May 2007

External Use

Fulfilling Moore's Law

Moore's Law Requires Continual Improvement in Cost/Function which Is Driven by Technology Innovations and Manufacturing

Ref: 2003 ITRS

APPLIED MATERIALS.

External Use

Economic Impact of Wafer Size Transition

Manufacturing Cost Trend

SEMI Strategic Business Conference 2007

External Use

APPLIED MATERIALS

Consumerization of the Industry

SEMI Strategic Business Conference 2007

External Use

APPLIED MATERIALS

Consumerization of the Industry Changes Everything

- Sacrificing fab agility
- Suboptimal investment decisions
- ... is NO LONGER ACCEPTABLE in the consumer era
 - Cycle time / agility requirements
 - Resource limitations
- Fabs need to match the economics of the consumer era
 - Short cycle time manufacturing and short lead time
 - Small lot size
 - Frequent recipe change

Equipment R&D Gap

Note: Affordable R/D forecast assumes 14% of equipment industry revenues Sources: S&P, SIA, SEMI, Infrastructure Advisors

SEMI Strategic Business Conference 2007

APPLIED MATERIALS

SEMI Strategic Business Conference 2007

External Use

APPLIED MATERIALS

SEMI Strategic Business Conference 2007

External Use

APPLIED MATERIALS

Productivity Space

SEMI Strategic Business Conference 2007

External Use

APPLIED MATERIALS

Consumerization of the Industry Changes Everything

- Push for advanced technology created fab challenges:
 - High variability in tool operational performance (defects, MTBF, MTBI, MTTR)
 - Fabs incur high costs to contain and control variability
 - Fabs sacrifice cycle time to maintain operational efficiency
- This is NO LONGER ACCEPTABLE in the consumer era:
 - Cycle time / agility requirements
 - Cost
- Consumer era also severely curtails available funding across the semiconductor food chain

No more Business As Usual

SEMI Strategic Business Conference 2007

SEMI Strategic Business Conference 2007

Next Generation Factory Vision: Role of Cycle Time

- 50% reduction in cycle time: from 2 days per mask layer today to 0.7-1 days/layer
 - Offset continuing growth in number of mask layers
 - Reduce product delivery time to customers
- Shorter cycle time enablers:
 - More reliable process equipment
 - Eliminating of batching delays
 - Reduced lot sizes
- Several factors must come together to realize substantially shorter cycle time
 - AMHS transport performance
 - Storage strategies

Note: Based on ISMI Vision, 11/6/2006

Fulfilling Moore's Law Role of Cycle Time

Ref: 2003 ITRS

APPLIED MATERIALS.

External Use

Maximizing the Return on Fab Investment

Optimize fab operations

Build foundation of rapid, differentiated, technology solutions

- •Extend Litho
- •Enable transistor performance
- •Scale interconnect RC
- Scale memory density (strain)
- Resolve nano defects

SEMI Strategic Business Conference 2007

External Use

APPLIED MATERIALS

300mm Prime : Maximizing the Return on 300mm Investment

Definition:

- The 300 mm Prime program seeks to implement <u>discontinuous</u> improvements in fab productivity of the type historically coinciding with wafer size transitions...
- ... without incurring the costs and risks associated with a scale-up of tool sets
- Scope: primary focus will be increased fab <u>agility</u> and <u>reduced</u> <u>cycle time</u>, as a complement to <u>continuous improvements</u> in the productivity of the 300mm tool set

Source: Definition Used in SEMI Working Group Analysis

300mm Prime Opportunity Space

		Possible Technological Implementations (Example)			
Needs/Benefits/Levers		Small Carrier Size	Single Wafer Processing	Wafer Level Tracking	
First Wafer Effect	Average setup time				
	time to start processing 1 st wafer				
Tool Variability	% of down time that is unscheduled				
	Variability of time between down time				
	Variability of repair time				
Transport & Storage	Wafer wait time at tool inside carrier				
	Variability of carrier delivery time				
	Variability (distribution) of WIP awaiting tool				

Source: Based on Joint ISMI/SEMI Productivity Working Group Analysis

SEMI Strategic Business Conference 2007

APPLIED MATERIALS

External Use

APPLIED MATERIALS

16

U

Consumerization of the Industry Changes Everything

- Sacrificing fab agility
- Suboptimal investment decisions
- ... is NO LONGER ACCEPTABLE in the consumer era
 - Cycle time / agility requirements
 - Resource limitations
- Fabs need to match the economics of the consumer era
 - Short cycle time manufacturing and short lead time
 - Small lot size
 - Frequent recipe change

It's time for 300mm Prime

think it. apply it."

APPLIED MATERIALS.